尾调用优化

尾调用 #

基础说明 #

尾调用(Tail Call)是函数式编程的一个重要概念,本身非常简单,一句话就能说清楚,就是指某个函数的最后一步是调用另一个函数。

function f(x){
  return g(x);
}

上面代码中,函数f的最后一步是调用函数g,这就叫尾调用

以下三种情况,都不属于尾调用

// 情况一
function f(x){
  let y = g(x);
  return y;
}

// 情况二
function f(x){
  return g(x) + 1;
}

// 情况三
function f(x){
  g(x);
}

上面代码中,情况一是调用函数g之后,还有赋值操作,所以不属于尾调用,即使语义完全一样。

情况二也属于调用后还有操作,即使写在一行内。情况三等同于下面的代码。

function f(x){
  g(x);
  return undefined;
}

尾调用不一定出现在函数尾部,只要是最后一步操作即可。

function f(x) {
  if (x > 0) {
    return m(x)
  }
  return n(x);
}

上面代码中,函数mn都属于尾调用,因为它们都是函数f的最后一步操作。


原理说明 #

尾调用之所以与其他调用不同,就在于它的特殊的调用位置。

我们知道,函数调用会在内存形成一个调用记录,又称调用帧(call frame),保存调用位置和内部变量等信息。

如果在函数A的内部调用函数B,那么在A的调用帧上方,还会形成一个B的调用帧。等到B运行结束,将结果返回到AB的调用帧才会消失。

如果函数B内部还调用函数C,那就还有一个C的调用帧,以此类推。所有的调用帧,就形成一个调用栈(call stack)。

尾调用由于是函数的最后一步操作,所以不需要保留外层函数调用帧,因为调用位置内部变量等信息都不会再用到了,只要直接用内层函数调用帧,取代外层函数调用帧就可以了。


优化说明 #

function f() {
  let m = 1;
  let n = 2;
  return g(m + n);
}
f();

// 等同于
function f() {
  return g(3);
}
f();

// 等同于
g(3);

上面代码中,如果函数g不是尾调用,函数f就需要保存内部变量mn的值、g的调用位置等信息。但由于调用g之后,函数f就结束了,所以执行到最后一步,完全可以删除f(x)的调用帧,只保留g(3)的调用帧。

这就叫做尾调用优化(Tail call optimization),即只保留内层函数调用帧。如果所有函数都是尾调用,那么完全可以做到每次执行时,调用帧只有一项,这将大大节省内存。这就是尾调用优化的意义。

注意,只有不再用到外层函数内部变量内层函数调用帧才会取代外层函数调用帧,否则就无法进行尾调用优化

function addOne(a){
  var one = 1;
  function inner(b){
    return b + one;
  }
  return inner(a);
}

上面的函数不会进行尾调用优化,因为内层函数inner用到了外层函数addOne的内部变量one


尾递归 #

基础说明 #

函数调用自身,称为递归。如果尾调用自身,就称为尾递归

递归非常耗费内存,因为需要同时保存成千上百个调用帧,很容易发生栈溢出错误(stack overflow)。但对于尾递归来说,由于只存在一个调用帧,所以永远不会发生栈溢出错误。


function factorial(n) {
  if (n === 1) return 1;
  return n * factorial(n - 1);
}

factorial(5) // 120

上面代码是一个阶乘函数,计算n的阶乘,最多需要保存n个调用记录,复杂度 O(n)


优化案例 #

阶乘优化方案一

尾递归写阶乘,只保留一个调用记录,复杂度 O(1)


function factorial(n, total) {
  if (n === 1) return total;
  return factorial(n - 1, n * total);
}

factorial(5, 1) // 120

阶乘优化方案二

尾递归的实现,往往需要改写递归函数,确保最后一步只调用自身。做到这一点的方法,就是把所有用到的内部变量改写成函数的参数。

比如上面的例子,阶乘函数 factorial 需要用到一个中间变量total,那就把这个中间变量改写成函数的参数。这样做的缺点就是不太直观,第一眼很难看出来,为什么计算5的阶乘,需要传入两个参数51

尾递归函数之外,再提供一个正常形式的函数


function tailFactorial(n, total) {
  if (n === 1) return total;
  return tailFactorial(n - 1, n * total);
}

function factorial(n) {
  return tailFactorial(n, 1);
}

factorial(5) // 120

上面代码通过一个正常形式的阶乘函数factorial,调用尾递归函数tailFactorial,看起来就正常多了。


阶乘优化方案三

函数式编程有一个概念,叫做柯里化(currying),意思是将多参数函数转换成单参数的形式。这里也可以使用柯里化,进行相关改造。

function currying(fn, n) {
  return function (m) {
    return fn.call(this, m, n);
  };
}

function tailFactorial(n, total) {
  if (n === 1) return total;
  return tailFactorial(n - 1, n * total);
}

const factorial = currying(tailFactorial, 1);

factorial(5) // 120

阶乘优化方案四

这里也可以采用 ES6 的函数默认值。


function factorial(n, total = 1) {
  if (n === 1) return total;
  return factorial(n - 1, n * total);
}

factorial(5) // 120

上面代码中,参数total有默认值1,所以调用时不用提供这个值。


Fibonacci 数列

非尾递归的 Fibonacci 数列实现如下。

function Fibonacci (n) {
  if ( n <= 1 ) {return 1};

  return Fibonacci(n - 1) + Fibonacci(n - 2);
}

Fibonacci(10) // 89
Fibonacci(100) // 超时
Fibonacci(500) // 超时

尾递归优化过的 Fibonacci 数列实现如下。

function Fibonacci2 (n , ac1 = 1 , ac2 = 1) {
  if( n <= 1 ) {return ac2};

  return Fibonacci2 (n - 1, ac2, ac1 + ac2);
}

Fibonacci2(100) // 573147844013817200000
Fibonacci2(1000) // 7.0330367711422765e+208
Fibonacci2(10000) // Infinity

由此可见,尾调用优化递归操作意义重大,所以一些函数式编程语言将其写入了语言规格。

ES6 亦是如此,第一次明确规定,所有 ECMAScript 的实现,都必须部署尾调用优化。这就是说,ES6 中只要使用尾递归,就不会发生栈溢出(或者层层递归造成的超时),相对节省内存。

优化总结 #

总结一下,递归本质上是一种循环操作。纯粹的函数式编程语言没有循环操作命令,所有的循环都用递归实现,这就是为什么尾递归对这些语言极其重要。对于其他支持尾调用优化的语言(比如 LuaES6),只需要知道循环可以用递归代替,而一旦使用递归,就最好使用尾递归


替换方案 #

尾递归优化只在严格模式下生效,那么正常模式下,或者那些不支持该功能的环境中,有没有办法也使用尾递归优化呢?回答是可以的,就是自己实现尾递归优化

它的原理非常简单。尾递归之所以需要优化,原因是调用栈太多,造成溢出,那么只要减少调用栈,就不会溢出

怎么做可以减少调用栈呢?就是采用循环换掉递归

下面是一个正常的递归函数


function sum(x, y) {
  if (y > 0) {
    return sum(x + 1, y - 1);
  } else {
    return x;
  }
}

sum(1, 100000)
// Uncaught RangeError: Maximum call stack size exceeded(…)

上面代码中,sum是一个递归函数,参数x是需要累加的值,参数y控制递归次数。一旦指定sum递归 100000 次,就会报错,提示超出调用栈的最大次数。

蹦床函数(trampoline)可以将递归执行转为循环执行。


function trampoline(f) {
  while (f && f instanceof Function) {
    f = f();
  }
  return f;
}

上面就是蹦床函数的一个实现,它接受一个函数f作为参数。只要f执行后返回一个函数,就继续执行。

注意,这里是返回一个函数,然后执行该函数,而不是函数里面调用函数,这样就避免了递归执行,从而就消除了调用栈过大的问题。

然后,要做的就是将原来的递归函数,改写为每一步返回另一个函数。


function sum(x, y) {
  if (y > 0) {
    return sum.bind(null, x + 1, y - 1);
  } else {
    return x;
  }
}

上面代码中,sum函数的每次执行,都会返回自身的另一个版本。

现在,使用蹦床函数执行sum,就不会发生调用栈溢出


trampoline(sum(1, 100000))
// 100001

蹦床函数并不是真正的尾递归优化,下面的实现才是。


function tco(f) {
  var value;
  var active = false;
  var accumulated = [];

  return function accumulator() {
    accumulated.push(arguments);
    if (!active) {
      active = true;
      while (accumulated.length) {
        value = f.apply(this, accumulated.shift());
      }
      active = false;
      return value;
    }
  };
}

var sum = tco(function(x, y) {
  if (y > 0) {
    return sum(x + 1, y - 1)
  }
  else {
    return x
  }
});

sum(1, 100000)
// 100001

上面代码中,tco函数是尾递归优化的实现,它的奥妙就在于状态变量active

默认情况下,这个变量是不激活的。一旦进入尾递归优化的过程,这个变量就激活了。

然后,每一轮递归sum返回的都是undefined,所以就避免了递归执行。

accumulated数组存放每一轮sum执行的参数,总是有值的,这就保证了accumulator函数内部的while循环总是会执行。

这样就很巧妙地将递归改成了循环,而后一轮的参数会取代前一轮的参数,保证了调用栈只有一层。


Build by Loppo 0.6.16